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We investigate the propagation of a spatial soliton in an optical lattice imprinted in a nonlocal thermal media with infinite 

range of nonlocality. A variational approach is used to obtain dynamical equation for beam width, amplitude and curvature. 

Furthermore an approximate formula to form a quasi-soliton is obtained. What implying that Gaussian function is a good 

approximation to a nonlocal spatial soliton in such thermal media with lattices when the lattice period is larger. Numerical 

simulations show the dynamic propagation of the quasi-solitons. 
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1. Introduction 

 

Optical spatial solitons in optical lattices are widely 

investigated in both local and nonlocal nonlinear media in 

recent years [1-19], ranger from photorefractive crystals, 

local and nonlocal kerr media, to liquid crystal, lead glass, 

etc. Recent progress in creation of reconfigurable optical 

lattices in photorefractive crystals [2-6], mobility of 

solitons in nonlocal kerr media [7-10], nematic liquid 

crystals [11-14] and lead glass [15-19] opened the 

direction to explore the properties of solitons by varying 

the lattice period, depth and nonlocality of media. All the 

investigations prove that the optical lattices and the 

nonlocality play an important role in the formation and 

steering of such spatial solitons, which could make the 

solitons stable. In generality, the nonlocality of media can 

be classified as three kinds: local, finite range of 

nonlocality, infinite range of nonlocality, and the 

difference of which are discussed in Ref [15]. At the same 

time the nonlocal system with infinite range of nonlocality 

have attract much interest recently. For example, 

Efremidis investigated the properties of nonlocal lattice 

solitons in thermal media (with infinite range of 

nonlocality) [16], nonlocal high-order surface soliton in 

such nonlocal thermal media [17]. Localization of light in 

a parabolically bending waveguide array in thermal 

nonlinear media [18]. Propagation of solitons in thermal 

media with periodic nonlinearity [19], etc.  

Inspired by their work, we investigated the 

propagation of a spatial soliton in an optical lattice 

imprinted in such nonlocal thermal media with infinite 

range of nonlocality, and obtained the dynamical equation 

for beam width, amplitude and curvature by using a 

variational approach. Furthermore how the input power, 

modulation period and depth of optical lattices act on the 

formation and propagation of such solitons are discussed. 

Results show that a stable propagation of the spatial 

soliton in this medium is possible, and an approximate 

formula to form a quasi-soliton is obtained. What implying 

that Gaussian function is a good approximation to a 

nonlocal spatial soliton in such thermal media with optical 

lattice when the lattice period is larger. Pertinent numerical 

numerical examples are presented to show their 

propagation properties. 

 

 

2. Theoretical model and numerical  

   simulations 

 

Propagation of one dimensional optical beam in 

nonlocal thermal media with optical lattice is given by the 

following equations [15-21]: 
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Where ( )V X  is a period potential, here we consider the 

cos-function potential ( ) cos(2 )V X h X T  with ,  h T  

lattice length and period, respectively. ( )N X  beam 

induced refractive index. In particular, we assume the 

sample of length be 2d , d X d   . Under the 

assumption of ( , ) 0, ( 0, ) 0N X d Z N X Z X        , 

the exact solution of possion equation be:  
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Where 2 2( ) 1,  exp( ) 0d d   erf  when d  . 

Equations (1-2) could be rewritten as a variation problem
 

[22], and the Lagrange density be 
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Since we consider the bright solitons in this media, a 

Gaussian tril function is introduced: 
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Where ( ),  ( ),  ( )a Z Z Z  are complex amplitude, 

beam width and curvature of the beam, respectively. 

Then the effective Lagrange is 
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the following differential equations are obtained: 
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After some calculations the following relations are true: 
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Then the ordinary differential equation for the beam 

width can be obtained: 
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Equation (14) is equivalent to Newtonian second law 

in classical mechanics for the motion of a one-dimensional 

particle acted by an equivalent force  
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In this paper we consider only the case 

when
2 2 2 1T   , which mean that the lattice period 

is larger. Then under this assumptions Eq. (14) can be 

rewritten as  
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When 0,  (0) 1ZZF     , the input power to form 

a soliton is 
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Easy to find 2SolitonP  , which means the soliton 

power is less than that in uniform nonlinear media. The 
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potential has the following form under the 

condition (0) 1, (0) 0Z   , 
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Where 
2 2

0 0 0P a a     . 

Typical potential with relation to input power, modulation 

period and modulation length  

are presented in Figs.1-3, respectively. 

Fig. 1 shows the potential of solitons with different 

input power when given 4T   and 0.2h  . From 

Fig. 1 we see that the potential of solitons are very 

sensitive to the input power around the normalized soliton 

width, i.e., 1  . So in the formation of such solitons, the 

solitons are very sensitive to the input power when the the 

normalized soliton width 1  . 

 

 
Fig. 1. Potential of solitons with different input power 

when  given  the  modulation period 4T   and  

            modulation length 0.2h  . 

 

 

Figs. 2-3 show the potential of solitons with different 

modulation period (length) when given 0.2h   

( 4T  ), respectively. Where 0 SolitonP P . From Fig. 2 

we see that the potential of solitons is not sensitive to the 

modulation period when 1  . The potential of solitons 

is not sensitive to the modulation length when 1   as 

shown in Fig. 3. 

 

 

Fig. 2. Potential of solitons with different modulation 

period  when  given 0 SolitonP P  and  modulation  

                length 0.2h  . 

 
Fig. 3. Potential of solitons with different modulation 

length  when  given 0 SolitonP P   and  modulation  

                 period 4T  . 

 

Dynamic propagation of the solitons in this media 

with an optical lattice is shown in Fig. 4. As is discussed 

above that 
2
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, so larger lattice 

depth support only lower power solitons when given 

modulation period, then the soliton power decrease with 

the increase of modulation length h . Dynamic 

propagation of solitons in such media when 0 SolitonP P  

and 4T   for different modulation length is shown in 

Fig. 4. From Fig. 4 we see that the quasi-soliton propagate 

stably even for longer propagation distance. What 

implying that Gaussian function is a good approximation 

to a nonlocal spatial soliton in such thermal media with 

lattices when the lattice period is larger. Additionally, we 

find that the input beam will vibrate when the input power 

does not equal to the soliton power. 
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Fig. 4. Dynamic propagation of solitons in nonlocal media when 0 SolitonP P  and 4T   for different modulation  

length (a).h=0; (b).h=0.2; (c).h=0.5; (d).h=0.8. 

 

 

Several issuers deserve discussion. Firstly, all the 

investigations confirm that Gaussian function is a good 

approximation to a nonlocal spatial soliton in nonlocal 

thermal media with optical lattice when the lattice period 

is larger. For the Gaussian beam is not the exact solution in 

such nonlocal system, there is some little vibration around 

the Gaussian solitons. Secondly, in this paper, we consider 

only the spatial solitons propagation in such nonlocal 

thermal media with an optical lattice, so the modulation 

periods is not very small compared to the soliton width. 

 

 

3. Conclusions  

 

We study the propagation of a spatial soliton in an 

optical lattice imprinted in a nonlocal thermal media with 

infinite range of nonlocality using a variational approach, 

and obtain the dynamical equations for beam width, 

amplitude and curvature. Results show that a stable 

propagation of the spatial soliton in this medium is 

observed when the input power is equal to the soliton 

power. All the investigations confirm that Gaussian 

function is a good approximation to a spatial soliton in 

nonlocal thermal media with optical lattice when the 

modulation period is larger. 
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